Graphical Krein Signature Theory and Evans--Krein Functions
نویسندگان
چکیده
منابع مشابه
Graphical Krein Signature Theory and Evans-Krein Functions
Two concepts, evidently very different in nature, have proved to be useful in analytical and numerical studies of spectral stability in nonlinear wave theory: (i) the Krein signature of an eigenvalue, a quantity usually defined in terms of the relative orientation of certain subspaces that is capable of detecting the structural instability of imaginary eigenvalues and, hence, their potential fo...
متن کاملThe Krein signature, Krein eigenvalues, and the Krein Oscillation Theorem
In this paper the problem of locating eigenvalues of negative Krein signature is considered for operators of the form JL, where J is skew-symmetric with bounded inverse and L is self-adjoint. A finite-dimensional matrix, hereafter referred to as the Krein matrix, associated with the eigenvalue problem JLu = λu is constructed with the property that if the Krein matrix has a nontrivial kernel for...
متن کاملSpectral stability of vortices in two-dimensional Bose-Einstein condensates via the Evans function and Krein signature
We investigate spectral stability of vortex solutions of the Gross-Pitaevskii equation, a mean-field approximation for Bose-Einstein condensates (BEC) in an effectively two-dimensional axisymmetric harmonic trap. We study eigenvalues of the linearization both rigorously and through computation of the Evans function, a sensitive and robust technique whose use we justify mathematically. Computati...
متن کاملSpectral Stability of Vortices in Two-Dimensional Boseâ•fiEinstein Condensates via the Evans Function and Krein Signature
We investigate spectral stability of vortex solutions of the Gross-Pitaevskii equation, a mean-field approximation for Bose-Einstein condensates (BEC) in an effectively two-dimensional axisymmetric harmonic trap. We study eigenvalues of the linearization both rigorously and through computation of the Evans function, a sensitive and robust technique whose use we justify mathematically. Computati...
متن کاملKrein Spectral Shift Function
A b s t r a c t . Let ~A,B be the Krein spectral shift function for a pair of operators A, B, with C = A B trace class. We establish the bound f F(I~A,B()~)I ) d,~ <_ f F ( 1 5 1 c l , o ( ) , ) l ) d A = ~ [F(j) F ( j 1 ) ] # j ( C ) , j= l where F is any non-negative convex function on [0, oo) with F(O) = 0 and #j (C) are the singular values of C. The choice F(t) = t p, p > 1, improves a rece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Review
سال: 2014
ISSN: 0036-1445,1095-7200
DOI: 10.1137/120891423